Reactive oxygen species homeostasis and signalling during drought and salinity stresses.
نویسندگان
چکیده
Water deficit and salinity, especially under high light intensity or in combination with other stresses, disrupt photosynthesis and increase photorespiration, altering the normal homeostasis of cells and cause an increased production of reactive oxygen species (ROS). ROS play a dual role in the response of plants to abiotic stresses functioning as toxic by-products of stress metabolism, as well as important signal transduction molecules. In this review, we provide an overview of ROS homeostasis and signalling in response to drought and salt stresses and discuss the current understanding of ROS involvement in stress sensing, stress signalling and regulation of acclimation responses.
منابع مشابه
Cotton metallothionein GhMT3a, a reactive oxygen species scavenger, increased tolerance against abiotic stress in transgenic tobacco and yeast
A cDNA clone encoding a 64-amino acid type 3 metallothionein protein, designated GhMT3a, was isolated from cotton (Gossypium hirsutum) by cDNA library screening. Northern blot analysis indicated that mRNA accumulation of GhMT3a was up-regulated not only by high salinity, drought, and low temperature stresses, but also by heavy metal ions, abscisic acid (ABA), ethylene, and reactive oxygen speci...
متن کاملSimultaneous Expression of Abiotic Stress Responsive Transcription Factors, AtDREB2A, AtHB7 and AtABF3 Improves Salinity and Drought Tolerance in Peanut (Arachis hypogaea L.)
Drought, salinity and extreme temperatures are the most common abiotic stresses, adversely affecting plant growth and productivity. Exposure of plants to stress activates stress signalling pathways that induce biochemical and physiological changes essential for stress acclimation. Stress tolerance is governed by multiple traits, and importance of a few traits in imparting tolerance has been dem...
متن کاملRole of Reactive Oxygen Species during Cell Expansion in Leaves1[OPEN]
The conditions under which plants grow greatly fluctuate and require that plants continuously monitor their environment and adjust their developmental program accordingly. Recent advances have indicated a clear and distinct role for reactive oxygen species (ROS) in both environmental stress sensing and guiding plant development. Leaf growth is a flexible process in which the final shape and siz...
متن کاملKresoxim-methyl primes Medicago truncatula plants against abiotic stress factors via altered reactive oxygen and nitrogen species signalling leading to downstream transcriptional and metabolic readjustment
Biotic and abiotic stresses, such as fungal infection and drought, cause major yield losses in modern agriculture. Kresoxim-methyl (KM) belongs to the strobilurins, one of the most important classes of agricultural fungicides displaying a direct effect on several plant physiological and developmental processes. However, the impact of KM treatment on salt and drought stress tolerance is unknown....
متن کاملSignal transduction pathways under abiotic stresses in plants
All abiotic stresses reduce plant growth and yield. The products of stress-inducible genes which could be directly protecting against these stresses include the enzymes responsible for the synthesis of various osmoprotectants like late embryogenesis abundant (LEA) proteins, antifreeze proteins, chaperones and detoxification enzymes. Another group of gene products involved in gene expression and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant, cell & environment
دوره 33 4 شماره
صفحات -
تاریخ انتشار 2010